## Acta Crystallographica Section E

## Structure Reports <br> Online

ISSN 1600-5368

## Dichloridobis( $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-tetramethyl-thiourea- $\kappa S$ )mercury (II)

Sidra Nawaz, ${ }^{\text {a }}$ Haseeba Sadaf, ${ }^{\text {a }}$ Mohammed Fettouhi, ${ }^{\text {b }}$ Atif Fazal ${ }^{\text {b }}$ and Saeed Ahmad ${ }^{\text {a* }}$<br>${ }^{\text {a }}$ Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan, and ${ }^{\mathbf{b}}$ Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia<br>Correspondence e-mail: saeed_a786@hotmail.com

Received 8 July 2010; accepted 14 July 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.006 \AA$; $R$ factor $=0.020 ; \omega R$ factor $=0.040$; data-to-parameter ratio $=24.8$.

In the title compound, $\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$, the $\mathrm{Hg}^{\text {II }}$ atom is located on a twofold rotation axis and is bonded in a distorted tetrahedral coordination mode to two chloride ions and to two tetramethylthiourea (tmtu) molecules through their S atoms. The crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds.

## Related literature

For background to Hg (II) complexes with thiourea ligands, see: Ahmad et al. (2009); Chieh (1977); Lobana et al. (2008); Popovic et al. $(2000,2002)$. The structure of the title compound is isotypic with $\left[\mathrm{Cd}(\mathrm{tmtu})_{2} \mathrm{Br}_{2}\right]$ (Nawaz et al., 2010a) and $\left[\mathrm{Cd}(\mathrm{tmtu})_{2} \mathrm{I}_{2}\right]$ (Nawaz et al., 2010b).


## Experimental

## Crystal data

$\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
$c=13.5177(9) \AA$
$M_{r}=535.94$
Monoclinic, $C 2 / c$
$a=18.7418$ (12) A
$\beta=130.834$ (1) ${ }^{\circ}$
$b=9.5920$ (6) $\AA$
$V=1838.6$ (2) $\AA^{3}$
$Z=4$
Mo $K \alpha$ radiation


Table 1
Selected bond lengths ( $\AA$ ).

| $\mathrm{Hg} 1-\mathrm{Cl} 1$ | $2.5028(8)$ | $\mathrm{Hg} 1-\mathrm{S} 1$ | $2.5329(7)$ |
| :--- | :--- | :--- | :--- |

Table 2
Hydrogen-bond geometry ( $\AA \mathrm{A}^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| C2-H2A $\cdots \mathrm{N} 2$ | 0.96 | 2.52 | $2.849(6)$ | 100 |
| C3-H3A 1 | 0.96 | 2.68 | $2.996(6)$ | 100 |
| C5-H5A $\cdots \mathrm{S} 1$ | 0.96 | 2.62 | $3.024(5)$ | 105 |

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, for providing the X-ray facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2376).

## References

Ahmad, S., Sadaf, H., Akkurt, M., Sharif, S. \& Khan, I. U. (2009). Acta Cryst. E65, m1191-m1192.
Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chieh, C. (1977). Can. J. Chem. 55, 1583-1587.
Lobana, T. S., Sharma, R., Sharma, R., Sultana, R. \& Butcher, R. J. (2008). Z. Anorg. Allg. Chem. 634, 718-723.
Nawaz, S., Sadaf, S., Fettouhi, M., Fazal, A. \& Ahmad, S. (2010a). Acta Cryst. E66, m950.
Nawaz, S., Sadaf, H., Fettouhi, M., Fazal, A. \& Ahmad, S. (2010b). Acta Cryst. E66, m951.
Popovic, Z., Pavlovic, G., Matkovic-Calogovic, D., Soldin, Z., Rajic, M., VikicTopic, D. \& Kovacek, D. (2000). Inorg. Chim. Acta, 306, 142-152.
Popovic, Z., Soldin, Z. G., Pavlovic, G., Matkovic-Calogovic, D., MrvosSermek, D. \& Rajic, M. (2002). Struct. Chem. 13, 425-436.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

## supplementary materials

Acta Cryst. (2010). E66, m952 [ doi:10.1107/S1600536810028138]

## Dichloridobis( $N, N, N^{\prime}, N^{\prime}$-tetramethylthiourea- $\kappa S$ )mercury(II)

S. Nawaz, H. Sadaf, M. Fettouhi, A. Fazal and S. Ahmad

## Comment

The coordination chemistry of mercury(II) complexes with thiourea type ligands has been the subject of several recent studies because of the importance of such systems as structural models in biology (Popovic et al., 2000; 2002). Mercury(II) is known form a wide variety of $1: 1$ and 1:2 complexes of the types $L H g X_{2}$ (Popovic et al., 2002) and $L_{2} \mathrm{Hg} X_{2}$ (Ahmad et al., 2009; Chieh, 1977: Lobana et al., 2008), where $X$ is a halide or pseudohalide, having structural arrangements entirely based on tetrahedral or pseudo-tetrahedral environments. We have recently reported the crystal structure of a $\mathrm{Hg}(\mathrm{CN})_{2}$ complex of $N, N^{\prime}$-dibutylthiourea (dbtu) (Ahmad et al., 2009). Herein we report on the crystal structure of a mercury(II) chloride complex of tetramethylthiourea (tmtu), $\left[\mathrm{Hg}\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$, (I) .

The crystal structure of (I) consists of discrete molecular species in which the mercury atom is located on a twofold rotation axis (Fig. 1) and is bonded in a distorted tetrahedral coordination mode to two chloride ions and to two tetramethylthiourea (tmtu) molecules. The $\mathrm{Hg}-\mathrm{S}$ and $\mathrm{Hg}-\mathrm{Cl}$ bond lengths are 2.5329 (7) and 2.5028 (8) $\AA$, respectively. The bond angles around Hg are in the range expected for a tetrahedral coordination, with the $\mathrm{S}-\mathrm{Hg}-\mathrm{S}$ angle (120.75 (4) ${ }^{\circ}$ ) having the largest deviation from the ideal value. The main cause of this deviation is the steric interaction between the $-\mathrm{CH}_{3}$ groups. The $\mathrm{SCN}_{2}-$ moiety of Tmtu is essentially planar with the $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{S}$ bond lengths corresponding to the values intermediate between single and double bonds.

The structure of the title compound is isotypic with $\left[\mathrm{Cd}(\operatorname{tmtu})_{2} \mathrm{Br}_{2}\right]\left(\mathrm{Nawaz}\right.$ et al., 2010a) and $\left[\mathrm{Cd}(\operatorname{tmtu})_{2} \mathrm{I}_{2}\right](\mathrm{Nawaz}$ et al., 2010b).

For a more detailed description of the structure, see: Nawaz et al. (2010a).

## Experimental

To $0.27 \mathrm{~g}(1.0 \mathrm{mmol})$ mercury(II) chloride in 10 ml methanol was added two equivalents of tetramethylthiourea in 15 ml methanol. A clear solution was obtained that was stirred for 30 minutes. The colorless solution was filtered and the filtrate was kept at room temperature for crystallization. As a result, a white crystalline product was obtained, that was finally washed with methanol and dried.

## Refinement

H atoms were placed in calculated positions with a $\mathrm{C}-\mathrm{H}$ distance of $0.96 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$.

## supplementary materials

## Figures



Fig. 1. The molecular structure of title compound with atomic numbering scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level. H-atoms were omitted for clarity.

## Dichloridobis( $N, N, N^{\prime}, N^{\prime}$-tetramethylthiourea- $\kappa S$ )mercury(II)

## Crystal data

$\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
$M_{r}=535.94$
Monoclinic, C2/c
Hall symbol: -C 2 yc
$a=18.7418$ (12) $\AA$
$b=9.5920(6) \AA$
$c=13.5177(9) \AA$
$\beta=130.834(1)^{\circ}$
$V=1838.6(2) \AA^{3}$
$Z=4$
$F(000)=1032$
$D_{\mathrm{x}}=1.936 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 12167 reflections
$\theta=2.6-28.3^{\circ}$
$\mu=8.88 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Colourless, plate
$0.29 \times 0.24 \times 0.11 \mathrm{~mm}$

2281 independent reflections
2103 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.6^{\circ}$
$h=-24 \rightarrow 24$
$k=-12 \rightarrow 12$
$l=-18 \rightarrow 18$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.040$
$S=1.07$
2281 reflections
92 parameters

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0109 P)^{2}+2.5249 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\max }=0.72 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.79 \mathrm{e} \AA^{-3}$

## 0 restraints

Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Primary atom site location: structure-invariant direct methods

Extinction coefficient: 0.00244 (8)

## Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$ factors(gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $A^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\text {iso }}{ }^{*} / U_{\text {eq }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Hg1 | 1.0000 | $0.703186(17)$ | 0.2500 | $0.04539(7)$ |
| C11 | $1.14323(5)$ | $0.55933(9)$ | $0.34397(8)$ | $0.0591(2)$ |
| S1 | $1.02994(5)$ | $0.83371(9)$ | $0.43697(7)$ | $0.04983(18)$ |
| N1 | $0.91286(18)$ | $0.7622(3)$ | $0.4747(3)$ | $0.0482(6)$ |
| N2 | $0.84430(16)$ | $0.8798(3)$ | $0.2830(2)$ | $0.0488(6)$ |
| C1 | $0.92029(18)$ | $0.8240(3)$ | $0.3933(3)$ | $0.0367(5)$ |
| C2 | $0.8466(3)$ | $0.8103(4)$ | $0.4900(4)$ | $0.0704(10)$ |
| H2A | 0.8192 | 0.8971 | 0.4446 | $0.106^{*}$ |
| H2B | 0.8793 | 0.8232 | 0.5812 | $0.106^{*}$ |
| H2C | 0.7977 | 0.7421 | 0.4542 | $0.106^{*}$ |
| C3 | $0.9842(3)$ | $0.6647(4)$ | $0.5756(4)$ | $0.0769(11)$ |
| H3A | 1.0131 | 0.6182 | 0.5468 | $0.115^{*}$ |
| H3B | 0.9549 | 0.5970 | 0.5914 | $0.115^{*}$ |
| H3C | 1.0313 | 0.7149 | 0.6548 | $0.115^{*}$ |
| C4 | $0.7491(2)$ | $0.8240(5)$ | $0.2114(4)$ | $0.0802(12)$ |
| H4A | 0.7531 | 0.7329 | 0.2441 | $0.120^{*}$ |
| H4B | 0.7174 | 0.8179 | 0.1200 | $0.120^{*}$ |
| H4C | 0.7144 | 0.8847 | 0.2231 | $0.120^{*}$ |
| C5 | $0.8518(3)$ | $0.9798(4)$ | $0.2094(4)$ | $0.0774(11)$ |
| H5A | 0.9121 | 1.0250 | 0.2669 | $0.116^{*}$ |
| H5B | 0.8027 | 1.0483 | 0.1711 | $0.116^{*}$ |
| H5C | 0.8454 | 0.9323 | 0.1414 | $0.116^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Hg 1 | $0.05014(10)$ | $0.04849(10)$ | $0.05259(11)$ | 0.000 | $0.04018(9)$ | 0.000 |
| $\mathrm{Cl1}$ | $0.0519(4)$ | $0.0599(5)$ | $0.0652(5)$ | $0.0126(3)$ | $0.0381(4)$ | $0.0065(4)$ |
| S 1 | $0.0386(3)$ | $0.0716(5)$ | $0.0453(4)$ | $-0.0091(3)$ | $0.0300(3)$ | $-0.0142(3)$ |


| N 1 | $0.0611(15)$ | $0.0488(13)$ | $0.0566(14)$ | $0.0005(11)$ | $0.0480(13)$ | $0.0002(11)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N 2 | $0.0439(13)$ | $0.0560(15)$ | $0.0465(13)$ | $0.0051(11)$ | $0.0295(11)$ | $0.0020(11)$ |
| C1 | $0.0415(13)$ | $0.0364(13)$ | $0.0415(13)$ | $-0.0023(10)$ | $0.0312(12)$ | $-0.0061(10)$ |
| C2 | $0.085(2)$ | $0.081(3)$ | $0.092(3)$ | $-0.011(2)$ | $0.078(2)$ | $-0.014(2)$ |
| C3 | $0.098(3)$ | $0.070(2)$ | $0.076(2)$ | $0.015(2)$ | $0.063(2)$ | $0.024(2)$ |
| C4 | $0.0387(17)$ | $0.116(3)$ | $0.070(2)$ | $-0.0013(18)$ | $0.0292(17)$ | $-0.015(2)$ |
| C5 | $0.088(3)$ | $0.081(3)$ | $0.069(2)$ | $0.027(2)$ | $0.054(2)$ | $0.029(2)$ |

Geometric parameters ( $\AA$, ${ }^{\circ}$ )

| $\mathrm{Hg} 1-\mathrm{Cl1}{ }^{\text {i }}$ | 2.5028 (8) | $\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 0.9600 |
| :---: | :---: | :---: | :---: |
| Hg1-Cl1 | 2.5028 (8) | $\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$ | 0.9600 |
| $\mathrm{Hg} 1-\mathrm{S} 1$ | 2.5329 (7) | C3-H3A | 0.9600 |
| $\mathrm{Hg} 1-\mathrm{S} 1^{\mathrm{i}}$ | 2.5329 (7) | C3-H3B | 0.9600 |
| S1-C1 | 1.730 (3) | C3-H3C | 0.9600 |
| N1-C1 | 1.336 (3) | C4-H4A | 0.9600 |
| N1-C2 | 1.460 (4) | C4-H4B | 0.9600 |
| N1-C3 | 1.461 (4) | C4-H4C | 0.9600 |
| N2-C1 | 1.327 (3) | C5-H5A | 0.9600 |
| N2-C5 | 1.453 (4) | C5-H5B | 0.9600 |
| N2-C4 | 1.466 (4) | C5-H5C | 0.9600 |
| C2-H2A | 0.9600 |  |  |
| $\mathrm{Cl1}-\mathrm{Hg} 1-\mathrm{Cl} 1$ | 113.08 (4) | $\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$ | 109.5 |
| $\mathrm{Cl1}{ }^{\text {i }}-\mathrm{Hg} 1-\mathrm{S} 1$ | 104.08 (3) | H2B-C2-H2C | 109.5 |
| $\mathrm{Cl1}-\mathrm{Hg} 1-\mathrm{S} 1$ | 107.56 (3) | N1-C3-H3A | 109.5 |
| $\mathrm{Cl} 1{ }^{\text {i }}-\mathrm{Hg} 1-\mathrm{S} 1^{\mathrm{i}}$ | 107.56 (3) | N1-C3-H3B | 109.5 |
| $\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{Sl}^{\text {i }}$ | 104.08 (3) | H3A-C3-H3B | 109.5 |
| $\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{S} 1^{\text {i }}$ | 120.75 (4) | $\mathrm{N} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$ | 109.5 |
| C1-S1-Hg1 | 101.20 (9) | H3A-C3-H3C | 109.5 |
| C1-N1-C2 | 122.2 (3) | H3B-C3-H3C | 109.5 |
| $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$ | 121.9 (3) | N2-C4-H4A | 109.5 |
| C2-N1-C3 | 114.4 (3) | N2-C4-H4B | 109.5 |
| $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 5$ | 121.5 (3) | H4A-C4-H4B | 109.5 |
| $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4$ | 122.9 (3) | N2-C4-H4C | 109.5 |
| C5-N2-C4 | 114.2 (3) | H4A-C4-H4C | 109.5 |
| N2-C1-N1 | 119.5 (2) | H4B-C4-H4C | 109.5 |
| N2- $\mathrm{C}_{1}$ - S 1 | 121.6 (2) | N2-C5-H5A | 109.5 |
| N1-C1-S1 | 118.9 (2) | N2-C5-H5B | 109.5 |
| $\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$ | 109.5 | H5A-C5-H5B | 109.5 |
| N1-C2-H2B | 109.5 | N2-C5-H5C | 109.5 |
| $\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$ | 109.5 | H5A-C5-H5C | 109.5 |
| N1-C2-H2C | 109.5 | H5B-C5-H5C | 109.5 |

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )
$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{~N} 2$

| $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- |
| 0.96 | 2.52 | $2.849(6)$ | 100 |

## sup-4

## supplementary materials

| $\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{~S} 1$ | 0.96 | 2.68 | $2.996(6)$ | 100 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A} \cdots \mathrm{~S} 1$ | 0.96 | 2.62 | $3.024(5)$ | 105 |

Fig. 1


